Question bank 2019

SIDDARTHA INSTITUTE OF SCIENCE AND TECNOLOGY :: PUTTUR

Siddharth Nagar, Narayanavanam Road – 517583

OUESTION BANK (DESCRIPTIVE)

Subject with Code: ADVANCED PHYSICS(19HS0850)Year & SenCourse & Branch: I B.Tech – Mechanical Engineering.Regulation:

Year & Sem: I-B.Tech & I-Sem Regulation: R19

<u>UNIT –I – WAVE OPTICS</u>

Ι.	(a)	Describe the formation of Newton's ring with necessary theory.	/ M
	(b)	Explain how the wavelength of light sources is determined by forming Newton's	5 M
		ring.	
2.	(a)	How multi colors on thin films?	4 M
	(b)	Derive the condition for bright and dark fringes through the interference in thin	8 M
		films by reflection?	
3.	(a)	State and explain principle of interference?	6 M
	(b)	Mention important conditions to get interference?	6 M
4.	(a)	What is coherence? Explain spatial and temporal coherence.	5 M
	(b)	Write brief note on experimental arrangement of Newton's rings.	7 M
5.	(a)	Explain the interference in thin films by reflection.	8 M
	(b)	What is the thickness of the thinnest film of 1.33 refractive index in which o	4 M
		destructive interference of the yellow light ($6000 A$) of a normally incident beam	
C	(a)	in air can take place by reflection?	ζM
6.	(a)	Distinguish between interference and diffraction?	6 M
-	(b)	Distinguish between Fresnel's and Fraunhofer diffraction?	6 M
7.	(a)	Derive the conditions to get principal maximum and minimum intensity positions due to single slit due to Fraunhofer single slit diffraction.	8 M
	(b)	Draw intensity distribution curves and give condition for bright and dark fringes	4 M
		in single slit diffraction pattern.	
8.	(a)	Write brief note on grating spectrum?	6 M
	(b)	How you determine the wavelength of light using grating spectrum?	6 M
9.	(a)	What is diffraction grating how diffraction grating constructed?	8 M
	(b)	A plane grating having 10520 lines per cm is illuminated with light having a	4 M
		wave length of 5 x 10^{-5} cm at normal incidence how many orders are visible in	
		the grating spectra?	
10	(a)	Define interference, diffraction and grating equation?	6 M
	(b)	What is grating spectrum and mention the use of diffraction gating in technical	6 M
		world ?	
		<u>UNIT –II – ACOUSTICS AND ULTRASONICS</u>	
1.	(a)	Define Reverberation and Reverberation time?	7 M
	(b)	What are the basic requirements of acoustically good hall?	5 M
2.	(a)	Define absorption coefficient of sound and derive it?	7 M
	(b)	A class room of volume 360 m ³ has a reverberation time 1.6 seconds.	5 M
		Calculate the total sound absorption coefficient of the class room?	
3.	(a)	Write Sabine's formula for reverberation time? Mention factors controlling the reverberation time?	7 M
	(b)	A hall of volume 1000 m^3 is found to have a reverberation time of 2 seconds.	5 M
	(0)	If the area of the sound absorbing surface is 350 m^2 , calculate average	J 1VI
		in the area of the sound absorbing surface is 550 m, calculate average	

Question bank 2019

		absorption coefficient?	
4.	(a)	Define following bterms	8 M
		(1) Reverberation	
		(2) Absorption coefficient	
		(3) Pitch and Loudness of sound	
	(b)	A class room of volume 200 m ³ has a reverberation time 1.6 seconds.	4 M
		Calculate the total sound absorption coefficient of the class room?	
5.	(a)	What is the importance of acoustics in engineering	6 M
	(b)	How we optimize the reverberation time in the music halls?	6 M
6.	(a)	Write the properties of Ultrasonic waves.	6 M
	(b)	Explain the detection methods of Ultrasonic waves.	6 M
7.	(a)	Explain Piezoelectric effect.	4 M
	(b)	Describe the application of Ultrasonic in non-destructive testing (NDT) of	8 M
		material	_
8.	(a)	How ultrasonics are produced by using piezoelectric generator?	8 M
	(b)	A quartz crystal has a thickness of 4 x 10^{-3} and density 3 x 10^{3} kg/m ³ .	4 M
		Calculate its fundamental frequency. Give the Youngs modulus of crystal is	
		$8.2 \times 10^{10} \text{ N/m}^2$.	
9.	(a)	Give the important applications of ultrasonic waves?	6 M
	(b)	How will you classify sound waves based on their frequencies?	6 M
10.	(a)	Write brief note on medical applications of ultrasonic waves?	6 M
	(b)	What are the characteristics of sound?	6 M
		<u>UNIT –III – MAGNETIC MATERIALS AND DIELECTRIC MATERIALS</u>	
1.	(a)	Define i) magnetic moment and ii) magnetic susceptibility.	4 M
	(b)	Explain the origin of magnetic moments.	8 M
2.	(a)	Define i) magnetization ii) magnetic flux density iii) magnetization iv) magnetic	8 M
		dipole	
	(b)	A circular loop of copper having a diameter of 10 cm carries a current of 500	4 M
		Ma.caliculate the magnetic moment associated with the loop.	
3.	(a)	Describe the classification of magnetic materials based on spin magnetic	8 M
		moments.	
	(b)	Discuss the applications of soft magnetic materials.	4 M
4.	(a)	Explain B-H curve of ferromagnetic material.	8 M
	(b)	What are soft and hard magnetic materials.	4 M
_	(-)		0 14
5.	(a)	Define magnetic susceptibility and permeability. Obtain the relation between	8 M
		them?	434
	(b)	Find the relative permeability of ferro magnetic material if a magnetic field of	4 M
~		strength 220 A/m produces magnetization 3300 A/m in it.	7) (
6.	(a)	What are dielectric materials? And explain their properties?	7 M
7	(b)	Define i. dipole moment ii. Polarization	5 M
7.	(a)	Describes the different types of polarization?	8 M
C	(b)	What are the advantages of dielectric materials	4 M
8.	(a)	Explain phenomenon of electric polarization in dielectrics. Derive an expression for that.	8 M
	(\mathbf{b})	The dielectric constant of He gas at NTP is 1.0000684. calculate the electronic	4 M
	(b)	polarizability of He atoms if the gas contains 2.7×10^{25} atoms per m ³ .	4 IVI
9.	(a)	What is orientation polarization? Derive an expression for the mean dipole	6 M
).	(u)	what is orientation polarization. Derive an expression for the mean appole	0 101

		Question bank	2019
		moment when a polar material is subjected to an external field	
	(b)	Derive Clausius – Mossotti equation?	6 M
10.	. ,	Discuss the frequency dependence of various polarization process in dielectric	8 M
		materials	
	(b)	Explain the important requirements of insulators.	4 M
		UNIT IV LASERS AND FIBER OPTICS	
1.	(a)	Describe the important characteristic of laser beam?	6 M
	(b)	Explain the difference between spontaneous and stimulated emission of radiation?	6 M
2.	(a)	Derive the relation between the various Einstein's coefficients of absorption and emission of radiation.	8 M
	(b)	Explain population inversion?	4 M
3.	(a)	Explain the construction and working principle of He-Ne laser with suitable	8 M
		energy level diagram.	
	(b)	Write few advantages of He-Ne laser.	4 M
4.	(a)	Explain the construction and working of Nd:YAG laser with suitable energy level diagram.	8 M
	(b)	What are the advantages of Nd:YAG laser?	4 M
5.	(a)	Explain the different pumping mechanisms in laser.	6 M
-	(b)	Write brief note on applications of lasers?	6 M
6.	(a)	What is the acceptance angle of an optical fibre and derive an expression for it.	8 M
	(b)	An optical fibre has a core refractive index of 1.44 and cladding refractive index of 1.40. Find its θ_a .	4 M
7.	(a)	What is the numerical aperture of an optical fibre and derive an expression for it.	8 M
	(b)	An optical fibre has a numerical aperture of 0.20 and cladding refractive index of 1.59. Determine the refractive index of core and the acceptance angle for the fibre in water has a refractive index of 1.33.	
8.	(a)	Differentiate step index and graded index fibers.	6 M
	(b)	Write brief note on attenuation in optical fibers.	6 M
9.	(a)	Explain the black diagram of fiber communication system?	8 M
	(b)	What are the applications of fiber optics?	4 M
10.	` '	Distinguish between single mode and multimode optical fibers	6 M
	(b)	Write brief note on the structure of fiber cables	6 M
		<u>UNIT-V</u> –(<u>PHYSICS OF NANOMATERIALS)</u>	
1			
1.	(a) (b)	What is nanomaterial? Write the classification of nanomaterials	6 M 6 M
n	(b)	Explain the basic principle of nanomaterials. What is Quantum Confinement?	6 M 5 M
2.	(a)	What is Quantum Confinement?	5 M

I.

- Write the applications of nanomaterial? 7 M (b) Explain why surface to volume ratio very large for nano materials? 3. (a) 8 M Find the surface area to volume ratio of Sphere using surface area and volume (b) 4 M calculation for the given radius is 5 meter? Explain ball milling technique for synthesis of nanomaterial? What are the techniques available for synthesizing nanomaterials? 4. (a) 8 M
- 4 M (b) 6 M
- What is nanotechnology? How it is useful to the society? 5. (a)

Question bank 2019

	(b)	Discuss properties of nanomaterials?	6 M
6.	(a)	How we synthesis nanomaterial by Sol-Gel technique?	8 M
	(b)	Write advantages of sol-gel process?	4 M
7.	(a)	What are the differences between nanotechnology and NanoScience?	6 M
	(b)	Define Condensation, Crystal growth and Nucleation?	6 M
8.	(a)	Write brief note on biomedical applicatins of nanomaterials?	6 M
	(b)	What is the future scope of nanomaterials?	6 M
9.	(a)	What is top down approach and explain ball milling technique for synthesis of nanomaterial	8 M
	(b)	Write advantages of ball milling technique.	4 M
10	(a)	What is bottom up approach and explain sol-gel preparation method with neat diagram?	8 M
	(b)	What is the effect of size on quantum dot?	4 M